2020 Vol. 63, No. 11
Article Contents

ZHANG Chao, YAO HuaJian, TONG Ping, LIU QinYa, LEI Ting. 2020. Joint inversion of linear array ambient noise surface-wave and teleseismic body-wave data based on an adjoint-state method. Chinese Journal of Geophysics (in Chinese), 63(11): 4065-4079, doi: 10.6038/cjg2020O0181
Citation: ZHANG Chao, YAO HuaJian, TONG Ping, LIU QinYa, LEI Ting. 2020. Joint inversion of linear array ambient noise surface-wave and teleseismic body-wave data based on an adjoint-state method. Chinese Journal of Geophysics (in Chinese), 63(11): 4065-4079, doi: 10.6038/cjg2020O0181

Joint inversion of linear array ambient noise surface-wave and teleseismic body-wave data based on an adjoint-state method

  • Fund Project:

    江苏省自然科学基金项目(BK20190499),河海大学中央高校基本科研业务费项目(2019B00714),国家自然科学基金项目(42004037),中国自然科学基金委重大项目课题(41790464)联合资助

More Information
  • Adjoint tomography is one of state-of-the-art imaging methods with high resolution. It can get better-resolved models by solving full wave equations to accurately simulate the propagation of seismic waves, and by considering full waveform information in inversion. However, the computational cost and storage requirement of 3-D adjoint tomography are high. Relatively, 2-D adjoint tomography is much more computationally efficient. Surface waves and teleseismic body waves provide essential data for studying crustal and uppermost mantle structures. Due to different sensitivities to shear wave velocity at depths and Moho discontinuity, joint inversion of both datasets can resolve the Vs model and Moho interface better. To take advantages of the two different types of data, we propose a strategy of joint inversion for ambient noise surface waves and teleseismic body waves recorded by linear arrays based on the adjoint-state method, which can be used to yield a fine Vs model and Moho topography. We perform various synthetic imaging experiments, in which the model has typical features of crustal structures in North China Craton (NCC). Compared to the surface wave inversion only, joint inversion improves the resolution of images as well as constraining discontinuity undulations better. Compared to the body wave inversion only, joint inversion can suppress high frequency artifacts and reduce the nonlinearity during inversion. This study could provide an efficient alternative to image fine velocity structures beneath linear arrays and also build a framework for joint inversion. It could improve the resolution of lithospheric imaging and also provide strategies of incorporating other waveforms in the future.

  • 加载中
  •  

    Ammon C J, Randall G E, Zandt G. 1990. On the nonuniqueness of receiver function inversions. Journal of Geophysical Research:Solid Earth, 95(B10):15303-15318. doi: 10.1029/JB095iB10p15303

     

    Bao X W, Sun X X, Xu M J, et al. 2015. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions. Earth and Planetary Science Letters, 415:16-24. doi: 10.1016/j.epsl.2015.01.020

     

    Beller S, Monteiller V, Operto S, et al. 2017. Lithospheric architecture of the South-Western Alps revealed by multiparameter teleseismic full-waveform inversion. Geophysical Journal International, 212(2):1369-1388.

     

    Bozdaǧ E, Peter D, Lefebvre M, et al. 2016. Global adjoint tomography:first-generation model. Geophysical Journal International, 207(3):1739-1766. doi: 10.1093/gji/ggw356

     

    Brocher T M. 2005. Empirical relations between elastic wavespeeds and density in the Earth's crust. Bulletin of the Seismological Society of America, 95(6):2081-2092. doi: 10.1785/0120050077

     

    Chen L, Wei Z G, Cheng C. 2010. Significant structural variations in the Central and Western North China craton and its implications for the craton destruction. Earth Science Frontiers (in Chinese), 17(1):212-228.

     

    Chen M, Huang H, Yao H, et al. 2014. Low wave speed zones in the crust beneath SE Tibet revealed by ambient noise adjoint tomography. Geophysical Research Letters, 41:334-340. doi: 10.1002/2013GL058476

     

    Chen M, Niu F L, Tromp J, et al. 2017. Lithospheric foundering and underthrusting imaged beneath Tibet. Nature Communications, 8:15659. doi: 10.1038/ncomms15659

     

    Chen P, Zhao L, Jordan T H. 2007. Full 3D tomography for the crustal structure of the Los Angeles region. Bulletin of the Seismological Society of America, 97(4):1094-1120. doi: 10.1785/0120060222

     

    Chen Y, Zhou H W, Ge H K. 2005. Seismic array in North China. Journal of Geodesy and Geodynamics (in Chinese), 25(4):1-5.

     

    Chen Y L, Niu F L. 2016. Joint inversion of receiver functions and surface waves with enhanced preconditioning on densely distributed CNDSN stations:Crustal and upper mantle structure beneath China. Journal of Geophysical Research:Solid Earth, 121(2):743-766. doi: 10.1002/2015JB012450

     

    Fang H J, Zhang H J, Yao H J, et al. 2016. A new algorithm for three-dimensional joint inversion of body wave and surface wave data and its application to the Southern California plate boundary region. Journal of Geophysical Research:Solid Earth, 121(5):3557-3569. doi: 10.1002/2015JB012702

     

    Fichtner A, Van Herwaarden D P, Afanasiev M, et al. 2018. The collaborative seismic earth model:generation 1. Geophysical Research Letters, 45(9):4007-4016. doi: 10.1029/2018GL077338

     

    Galetti E, Curtis A. 2012. Generalised receiver functions and seismic interferometry. Tectonophysics, 532-535:1-26. doi: 10.1016/j.tecto.2011.12.004

     

    Julià J, Ammon C J, Herrmann R B, et al. 2000. Joint inversion of receiver function and surface wave dispersion observations. Geophysical Journal International, 143(1):99-112. doi: 10.1046/j.1365-246x.2000.00217.x

     

    Komatitsch D, Liu Q Y, Tromp J, et al. 2004. Simulations of ground motion in the Los Angeles Basin based upon the Spectral-Element Method. Bulletin of the Seismological Society of America, 94(1):187-206. doi: 10.1785/0120030077

     

    Li J T, Song X D, Zhu L P, et al. 2017a. Joint inversion of surface wave dispersions and receiver functions with P velocity constraints:Application to Southeastern Tibet. Journal Geophysical Research:Solid Earth, 122(9):7291-7310. doi: 10.1002/2017JB014135

     

    Li Y H, Wang X C, Zhang R Q, et al. 2017b. Crustal structure across the NE Tibetan Plateau and Ordos Block from the joint inversion of receiver functions and Rayleigh-wave dispersions. Tectonophysics, 705:33-41. doi: 10.1016/j.tecto.2017.03.020

     

    Lin F C, Moschetti M P, Ritzwoller M H. 2008. Surface wave tomography of the western United States from ambient seismic noise:Rayleigh and Love wave phase velocity maps. Geophysical Journal International, 173(1):281-298. doi: 10.1111/j.1365-246X.2008.03720.x

     

    Liu C L, Chen H P, Xie J. 2018. Progress in the studies of the joint inversion of surface wave dispersion and receiver functions. Progress in Geophysics (in Chinese), 33(2):479-488, doi:10.6038/pg2018BB0189.

     

    Liu Q, Gu Y J. 2012. Seismic imaging:From classical to adjoint tomography. Tectonophysics, 566-567:31-66. doi: 10.1016/j.tecto.2012.07.006

     

    Liu Q Y, Li Y, Chen J H, et al. 2010. Joint inversion of receiver function and ambient noise based on Bayesian theory. Chinese Journal of Geophysics (in Chinese), 53(11):2603-2612.

     

    Liu S L, Yang D H, Dong X P, et al. 2017. Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling. Solid Earth, 8(5):969-986. doi: 10.5194/se-8-969-2017

     

    Monteiller V, Chevrot S, Komatitsch D, et al. 2013. A hybrid method to compute short-period synthetic seismograms of teleseismic body waves in a 3-D regional model. Geophysical Journal International, 192(1):230-247. doi: 10.1093/gji/ggs006

     

    Nocedal J. 1980. Updating quasi-Newton matrices with limited storage. Mathematics of Computation, 35(151):773-782. doi: 10.1090/S0025-5718-1980-0572855-7

     

    Owens T J, Zandt G, Taylor S R. 1984. Seismic evidence for an ancient rift beneath the Cumberland Plateau, Tennessee:A detailed analysis of broadband teleseismic P waveforms. Journal of Geophysical Research:Solid Earth, 89(B9):7783-7795. doi: 10.1029/JB089iB09p07783

     

    Shapiro N M, Campillo M. 2004. Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7):L07614, doi:10.1029/2004GL019491.

     

    Shapiro N M, Campillo M, Stehly L, et al. 2005. High-resolution surface-wave tomography from ambient seismic noise. Science, 307(5715):1615-1618. doi: 10.1126/science.1108339

     

    Shen W S, Ritzwoller M H, Schulte-Pelkum V. 2013. A 3-D model of the crust and uppermost mantle beneath the Central and Western US by joint inversion of receiver functions and surface wave dispersion. Journal of Geophysical Research:Solid Earth, 118(1):262-276. doi: 10.1029/2012JB009602

     

    Tao K, Grand S P, Niu F L. 2018. Seismic structure of the upper mantle beneath eastern asia from full waveform seismic tomography. Geochemistry, Geophysics, Geosystems, 19(8):2732-2763. doi: 10.1029/2018GC007460

     

    Tape C, Liu Q Y, Maggi A, et al. 2009. Adjoint tomography of the southern California crust. Science, 325(5943):988-992. doi: 10.1126/science.1175298

     

    Tarantola A, Valette B. 1982. Generalized nonlinear inverse problems solved using the least squares criterion. Reviews of Geophysics, 20(2):219-232. doi: 10.1029/RG020i002p00219

     

    Tong P, Chen C W, Komatitsch D, et al. 2014. High-resolution seismic array imaging based on an SEM-FK hybrid method. Geophysical Journal International, 197, 369-395. doi: 10.1093/gji/ggt508

     

    Tromp J, Tape C, Liu Q Y. 2005. Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels. Geophysical Journal International, 160(1):195-216.

     

    Virieux J, Operto S. 2009. An overview of full-waveform inversion in exploration geophysics. Geophysics, 74(6):WCC1-WCC26. doi: 10.1190/1.3238367

     

    Wang K, Yang Y J, Basini P, et al. 2018. Refined crustal and uppermost mantle structure of southern California by ambient noise adjoint tomography. Geophysical Journal International, 215(2):844-863. doi: 10.1093/gji/ggy312

     

    Wang Y, Chevrot S, Monteiller V, et al. 2016. The deep roots of the western pyrenees revealed by full waveform inversion of teleseismic P waves. Geology, 44(6):475-478. doi: 10.1130/G37812.1

     

    Wu R S, Luo J R, Wu B Y. 2014. Seismic envelope inversion and modulation signal model. Geophysics, 79(3):WA13-WA24. doi: 10.1190/geo2013-0294.1

     

    Yang Y J, Ritzwoller M H, Lin F C, et al. 2008. Structure of the crust and uppermost mantle beneath the western United States revealed by ambient noise and earthquake tomography. Journal of Geophysical Research:Solid Earth, 113(B12):B12310, doi:10.1029/2008JB005833.

     

    Yao H J, Van Der Hilst R D, De Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-I. Phase velocity maps. Geophysical Journal International, 166(2):732-744. doi: 10.1111/j.1365-246X.2006.03028.x

     

    Yao H J, Beghein C, Van Der Hilst R D. 2008. Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis-Ⅱ. Crustal and upper-mantle structure. Geophysical Journal International, 173(1):205-219. doi: 10.1111/j.1365-246X.2007.03696.x

     

    Zhang C, Yao H J, Liu Q Y, et al. 2018. Linear array ambient noise Adjoint tomography reveals intense crust-mantle interactions in North China Craton. Journal of Geophysical Research:Solid Earth, 123(1):368-383. doi: 10.1002/2017JB015019

     

    Zhang C. 2018. Linear array ambient noise and body wave waveform adjoint tomography: methodology and applications[Ph. D. thesis] (in Chinese). Hefei: University of Science and Technology of China.

     

    Zhao L, Jordan T H, Olsen K B, et al. 2005. Fréchet kernels for imaging regional earth structure based on three-dimensional reference models. Bulletin of the Seismological Society of America, 95(6):2066-2080. doi: 10.1785/0120050081

     

    Zheng C, Ding Z F, Song X D. 2018. Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure beneath the northern north-south seismic zone. Chinese Journal of Geophysics (in Chinese), 61(4):1211-1224, doi:10.6038/cjg2018L0443.

     

    Zheng T Y, Duan Y H, Xu W W, et al. 2017. A seismic model for crustal structure in North China Craton. Earth and Planetary Physics, 1(1):26-34. doi: 10.26464/epp2017004

     

    Zhu H J, Komatitsch D, Tromp J. 2017. Radial anisotropy of the North American upper mantle based on adjoint tomography with USArray. Geophysical Journal International, 211(1):349-377. doi: 10.1093/gji/ggx305

     

    Zhu H J. 2018. Crustal wave speed structure of North Texas and Oklahoma based on ambient noise cross-correlation functions and adjoint tomography. Geophysical Journal International, 214(1):716-730. doi: 10.1093/gji/ggy169

     

    Zhu L P, Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions. Journal of Geophysical Research:Solid Earth, 105(B2):2969-2980. doi: 10.1029/1999JB900322

     

    Zhu R X, Chen L, Wu F Y, et al. 2011. Timing, scale and mechanism of the destruction of the North China Craton. Science China Earth Sciences, 54(6):789-797. doi: 10.1007/s11430-011-4203-4

     

    Zhu R X, Xu Y G, Zhu G, et al. 2012. Destruction of the North China craton. Science China Earth Sciences, 55(10):1565-1587. doi: 10.1007/s11430-012-4516-y

     

    陈凌, 危自根, 程骋. 2010.从华北克拉通中、西部结构的区域差异性探讨克拉通破坏.地学前缘, 17(1):212-228.

     

    陈顒, 周华伟, 葛洪魁. 2005.华北地震台阵探测计划.大地测量与地球动力学, 25(4):1-5.

     

    刘成林, 陈浩朋, 谢军. 2018.面波频散与体波接收函数联合反演研究回顾及展望.地球物理学进展, 33(2):479-488, doi:10.6038/pg2018BB0189.

     

    刘启元, 李昱, 陈九辉等. 2010.基于贝叶斯理论的接收函数与环境噪声联合反演.地球物理学报, 53(11):2603-2612, doi:10.3969/j.issn.0001-5733.2010.11.008.

     

    张超. 2018.基于线性台阵背景噪声与体波波形伴随成像方法研究及应用[博士论文].合肥: 中国科学技术大学.

     

    郑晨, 丁志峰, 宋晓东. 2018.面波频散与接收函数联合反演南北地震带北段壳幔速度结构.地球物理学报, 61(4):1211-1224, doi:10.6038/cjg2018L0443.

     

    朱日祥, 陈凌, 吴福元等. 2011.华北克拉通破坏的时间、范围与机制.中国科学:地球科学, 41(5):583-592.

     

    朱日祥, 徐义刚, 朱光等. 2012.华北克拉通破坏.中国科学:地球科学, 42(8):1135-1159.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Tables(3)

Article Metrics

Article views(448) PDF downloads(62) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint