2023 Vol. 66, No. 3
Article Contents

ZENG XianYang, LIU Jing, WANG Wei, YAO WenQian, WU Jing, LIU XiaoLi, HAN LongFei, WANG WengXin, XING YuKun, DU RuiLin, YANG XuQian. 2023. Machine learning in identifying and mapping the surface rupture of the 2021 MW7.4 Madoi earthquake, Qinghai. Chinese Journal of Geophysics (in Chinese), 66(3): 1098-1112, doi: 10.6038/cjg2022Q0117
Citation: ZENG XianYang, LIU Jing, WANG Wei, YAO WenQian, WU Jing, LIU XiaoLi, HAN LongFei, WANG WengXin, XING YuKun, DU RuiLin, YANG XuQian. 2023. Machine learning in identifying and mapping the surface rupture of the 2021 MW7.4 Madoi earthquake, Qinghai. Chinese Journal of Geophysics (in Chinese), 66(3): 1098-1112, doi: 10.6038/cjg2022Q0117

Machine learning in identifying and mapping the surface rupture of the 2021 MW7.4 Madoi earthquake, Qinghai

  • Fund Project:


More Information
  • High-resolution mapping of coseismic surface rupture of large earthquakes is very important for better understanding the behavior and mechanism of earthquake rupture and for quantifying earthquake hazards. High-resolution UAV imagery and topographic data provide a large volume of valuable images of the surface rupture. Manual mapping of fractures on many high-resolution images could be labor-intensive, time-consuming, and thus inefficient. Machine learning provides more possibilities for the rapid processing of such big-data images. In this paper, we demonstrate the potential of Machine learning techniques to rapid, efficient, and complete identification of fractures of the surface rupture zone using high-precision UAV images of the 2021 Madoi MW7.4 earthquake. We applied the canny algorithm (based on Convolutional Neural Networks) to discuss the processing flow and key steps of UAV digital orthophoto in detail, including preparing training data, training, and post-processing. By comparing the interpretations of manual mapping and machine recognition, the proposed method can effectively map surface rupture, providing a tool for studying future large earthquakes. Machine learning has advantages and broad prospects in quantitative studies of earthquake geology, surface processes and geomorphology.

  • 加载中

    Adeli H, Panakkat A. 2009. A probabilistic neural network for earthquake magnitude prediction. Neural Networks, 22(7): 1018-1024. doi: 10.1016/j.neunet.2009.05.003


    Ambraseys N N, Tchalenko J S. 1970. The Gediz (Turkey) Earthquake of March 28, 1970. Nature, 227(5258): 592-593, doi: 10.1038/227592a0.


    Beechie T, Imaki H. 2014. Predicting natural channel patterns based on landscape and geomorphic controls in the Columbia River basin, USA. Water Resources Research, 50(1): 39-57. doi: 10.1002/2013WR013629


    Bergen K J, Johnson P A, De Hoop M V, et al. 2019. Machine learning for data-driven discovery in solid Earth geoscience. Science, 363(6433): eaau0323, doi: 10.1126/science.aau0323.


    Bi H Y, Zheng W J, Ren Z K, et al. 2017. Using an unmanned aerial vehicle for topography mapping of the fault zone based on structure from motion photogrammetry. International Journal of Remote Sensing, 38(8-10): 2495-2510. doi: 10.1080/01431161.2016.1249308


    Bi H Y, Zheng W J, Zeng J Y, et al. 2017. Application of Sfm photogrammetry method to the quantitative study of active tectonics. Seismology and Geology (in Chinese), 39(4): 656-674. doi: 10.3969/j.issn.0253-4967.2017.04.003


    Brenning A. 2005. Spatial prediction models for landslide hazards: Review, comparison and evaluation. Natural Hazards and Earth System Sciences, 5(6): 853-862. doi: 10.5194/nhess-5-853-2005


    Choi J H, Klinger Y, Ferry M, et al. 2018. Geologic inheritance and earthquake rupture processes: The 1905 M≥8 Tsetserleg-Bulnay strike-slip earthquake sequence, Mongolia. Journal of Geophysical Research: Solid Earth, 123(2): 1925-1953, doi: 10.1002/2017JB013962.


    Cowgill E, Bernardin T S, Oskin M E, et al. 2012. Interactive terrain visualization enables virtual field work during rapid scientific response to the 2010 Haiti earthquake. Geosphere, 8(4): 787-804. doi: 10.1130/GES00687.1


    Day S M, Ely G P. 2002. Effect of a shallow weak zone on fault rupture: numerical simulation of scale-model experiments. Bull. Seismol. Soc. Am. , 92(8): 3022-3041. doi: 10.1785/0120010273


    Deng Q D, Yu G H, Ye W H. 1992. Research on relationship between surface rupture parameters and magnitude of earthquake. //Deng Q D ed. Research of Active Fault (2) (in Chinese). Beijing: Seismological Press, 247-264.


    Du L, You X, Li K, et al. 2019. Multi-modal deep learning for landform recognition. ISPRS Journal of Photogrammetry and Remote Sensing, 158: 63-75. doi: 10.1016/j.isprsjprs.2019.09.018


    Dunning S A, Massey C I, Rosser N J. 2009. Structural and geomorphological features of landslides in the Bhutan Himalaya derived from Terrestrial Laser Scanning. Geomorphology, 103(1): 17-29. doi: 10.1016/j.geomorph.2008.04.013


    DuRoss C B, Gold R D, Dawson T E, et al. 2020. Surface displacement distributions for the July 2019 Ridgecrest, California, earthquake ruptures. Bull. Seismol. Soc. Am. , 110(4): 1400-1418, doi: 10.1785/0120200058.


    Fowler A, Bennett S E K, Wildgoose M, et al. 2012. An integrated multidisciplinary re-evaluation of the geothermal system at Valles Caldera, New Mexico, using an immersive three-dimensional (3D) visualization environment. //American Geophysical Union Fall Meeting. AGU.


    Frankel K L, Dolan J F. 2007. Characterizing arid region alluvial fan surface roughness with airborne laser swath mapping digital topographic data. Journal of Geophysical Research: Earth Surface, 112(F2): F02025, doi: 10.1029/2006JF000644.


    Gold R D, Cowgill E, Arrowsmith J R, et al. 2009. Riser diachroneity, lateral erosion, and uncertainty in rates of strike-slip faulting: A case study from Tuzidun along the Altyn Tagh Fault, NW China. Journal of Geophysical Research: Solid Earth, 114(B4): B04401, doi: 10.1029/2008JB005913.


    Goldberg D, Thomas A, Melgar D, et al. 2019. The complex kinematics and multi-fault rupture process of the 2019 Ridgecrest earthquakes. //AGU Fall Meeting 2019 Abstracts. AUG.


    Gong J Y, Ji S P. 2018. Photogrammetry and deep learning. Acta Geodaetica et Cartographica Sinica (in Chinese), 47(6): 693-704.


    Haeussler P J, Schwartz D P, Dawson T E, et al. 2004. Surface rupture and slip distribution of the Denali and Totschunda faults in the 3 November 2002 M7.9 earthquake, Alaska. Bull. Seismol. Soc. Am. , 94(6B): S23-S52. doi: 10.1785/0120040626


    Han L F, Liu-Zeng J, Yuan Z D, et al. 2019. Extracting features of alluvial fan and discussing landforms evolution based on high-resolution topography data: taking alluvial fan of Laohushan along Haiyuan fault zone as an instance. Seismology and Geology (in Chinese), 41(2): 251-265. doi: 10.3969/j.issn.0253-4967.2019.02.001


    Han L F, Liu-Zeng J, Yao W Q, et al. 2022. Detailed mapping of the surface rupture near the epicenter segment of the 2021 MadoiMW7.4 earthquake and discussion on distributed rupture in the step-over. Seismology and Geology (in Chinese), 44(2): 484-505. doi: 10.3969/j.issn.0253-4967.2022.02.013


    Hough S E, Thompson E, Baltay A G, et al. 2019. Near-field ground motions from the 2019 M6.4 and M7.1 Ridgecrest, California, earthquakes: Subdued shaking due to pervasive non-linear site response?. //AGU Fall Meeting 2019 Abstracts. AGU.


    Hu X, Bürgmann R, Xu X H, et al. 2021. Machine-learning characterization of tectonic, hydrological and anthropogenic sources of active ground deformation in California. Journal of Geophysical Research: Solid Earth, 126(11): e2021JB022373, doi: 10.1029/2021JB022373.


    Hudnut K W, Borsa A, Glennie C, et al. 2002. High-resolution topography along surface rupture of the 16 October 1999 Hector Mine, California, earthquake (MW7.1) from airborne laser swath mapping. Bull. Seismol. Soc. Am. , 92(4): 1570-1576. doi: 10.1785/0120000934


    King G, Nábělek J. 1985. Role of fault bends in the initiation and termination of earthquake rupture. Science, 228(4702): 984-987, doi: 10.1126/science.228.4702.984.


    Klinger Y, Xu X W, Tapponnier P, et al. 2005. High-resolution satellite imagery mapping of the surface rupture and slip distribution of the MW~7.8, 14 November 2001 Kokoxili Earthquake, Kunlun Fault, Northern Tibet, China. Bull. Seismol. Soc. Am. , 95(5): 1970-1987. doi: 10.1785/0120040233


    Klinger Y, Okubo K, Vallage A, et al. 2018. Earthquake damage patterns resolve complex rupture processes. Geophysical Research Letters, 45(19): 10279-10287, doi: 10.1029/2018gl078842.


    Lary D J, Alavi A H, Gandomi A H, et al. 2016. Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7(1): 3-10. doi: 10.1016/j.gsf.2015.07.003


    LeCun Y, Haffner P, Bottou L, et al. 1999. Object recognition with gradient-based learning. //Forsyth D A, Mundy J L, Gesú V, et al eds. Shape, Contour and Grouping in Computer Vision. Berlin, Heidelberg: Springer, 319-345.


    Li H B, Pan J W, Lin A M, et al. 2016. Coseismic surface ruptures associated with the 2014 MW6.9 Yutian earthquake on the Altyn Tagh Fault, Tibetan plateau. Bull. Seismol. Soc. Am. , 106(2): 595-608. doi: 10.1785/0120150136


    Li J, Heap A D, Potter A, et al. 2011. Application of machine learning methods to spatial interpolation of environmental variables. Environmental Modelling and Software, 26(12): 1647-1659. doi: 10.1016/j.envsoft.2011.07.004


    Li N Y. 2018. Studies on the relationship between macro ecological changes of marsh and climate in the Yellow River source region [Ph. D. thesis] (in Chinese). Kunming: Yunnan University.


    Li S J, Xiong L Y, Tang G A, et al. 2020. Deep learning-based approach for landform classification from integrated data sources of digital elevation model and imagery. Geomorphology, 354: 107045, doi: 10.1016/j.geomorph.2020.107045.


    Li W W, Zhou B, Hsu C Y, et al. 2017. Recognizing terrain features on terrestrial surface using a deep learning model: an example with crater detection. //Proceedings of the 1st Workshop on Artificial Intelligence and Deep Learning for Geographic Knowledge Discovery. Los Angeles, California: ACM, 33-36.


    Li Z M, Li W Q, Li T, et al. 2021. Seismogenic fault and coseismic surface deformation of the Maduo MS7.4 earthquake in Qinghai, China: A quick report. Seismology and Geology (in Chinese), 43(3): 722-737. doi: 10.3969/j.issn.0253-4967.2021.03.016


    Liu J, Chen T, Zhang P Z, et al. 2013. Illuminating the active Haiyuan Fault, China by airborne light detection and ranging. Chinese Science Bulletin (in Chinese), 58(1): 41-45. doi: 10.1360/972012-1526


    Liu J R, Ren Z K, Zhang H P, et al. 2018. Late Quaternary slip rate of the Laohushan fault within the Haiyuan fault zone and its tectonic implications. Chinese Journal of Geophysics (in Chinese), 61(4): 1281-1297, doi: 10.6038/cjg2018L0364.


    Liu X L, Xia T, Liu-Zeng J, et al. 2022. Distributed characteristics of the surface deformations associated with the 2021 MW7.4 Madoiearthquake, Qinghai, China. Seismology and Geology (in Chinese), 44(2): 461-483. doi: 10.3969/j.issn.0253-4967.2022.02.012


    Liu-Zeng J, Klinger Y, Sieh K, et al. 2006. Serial ruptures of the San Andreas fault, Carrizo Plain, California, revealed by three-dimensional excavations. Journal of Geophysical Research: Solid Earth, 111(B2): B02306, doi: 10.1029/2004JB003601.


    Liu-Zeng J, Zhang Z, Wen L, et al. 2009. Co-seismic ruptures of the 12 May 2008, MS8.0 Wenchuan earthquake, Sichuan: East-west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet. Earth and Planetary Science Letters, 286(3-4): 355-370. doi: 10.1016/j.epsl.2009.07.017


    Liu-Zeng J, Yao W Q, Liu X L, et al. 2022. High-resolution Structure-from-Motion models covering 160km-long surface ruptures of the 2021 MW7.4 Madoiearthquake in northern Qinghai-Tibetan Plateau. Earthquake Research Advances, 2(2): 100140. doi: 10.1016/j.eqrea.2022.100140


    Lo Y C, Zhao L, Xu X W, et al. 2018: The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications. Earth and Planetary Physics, 2(2). doi: 10.26464/epp2018014.


    Lozos J C, Harris R A. 2020. Dynamic rupture simulations of the M6.4 and M7.1 July 2019 Ridgecrest, California, earthquakes. Geophys. Res. Lett. , 47(7): e2019GL086020, doi: 10.1029/2019GL086020.


    Martin K M, Wood W T, Becker J J. 2015. A global prediction of seafloor sediment porosity using machine learning. Geophysical Research Letters, 42(24): 10640-10646. doi: 10.1002/2015GL065279


    Mattéo L, Manighetti I, Tarabalka Y, et al. 2021. Automatic fault mapping in remote optical images and topographic data with deep learning. Journal of Geophysical Research: Solid Earth, 126(4): e2020JB021269, doi: 10.1029/2020JB021269.


    Meier U, Curtis A, Trampert J. 2007. Fully nonlinear inversion of fundamental mode surface waves for a global crustal model. Geophysical Research Letters, 34(16): 16304, doi: 10.1029/2007GL030989.


    Mignan A, Danciu L, Giardini D. 2015. Reassessment of the maximum fault rupture length of strike-slip earthquakes and inference on Mmax in the Anatolian Peninsula, Turkey. Seismological Research Letters, 86(3): 890-900. doi: 10.1785/0220140252


    Olsen K B, Day S M, Minster J B, et al. 2008. TeraShake2: Spontaneous rupture simulations of MW7.7 Earthquakes on the southern San Andreas Fault. Bull. Seismol. Soc. Am. , 98(3): 1162-1185. doi: 10.1785/0120070148


    Olson B, Ridgecrest Earthquake Working Group. 2019. Slip distribution, slip sense and slip styles along strike of the Ridgecrest earthquake sequence surface ruptures. //GSA Annual Meeting. Phoenix, Arizona, USA, doi: 10.1130/abs/2019AM-342038.


    Oskin M E, Arrowsmith J R, Corona A H, et al. 2012. Near-field deformation from the El Mayor-Cucapah earthquake revealed by differential LiDAR. Science, 335(6069): 702-705. doi: 10.1126/science.1213778


    Palamara D R, Dickson M E, Kennedy D M. 2007. Defining shore platform boundaries using airborne laser scan data: A preliminary investigation. Earth Surface Processes and Landforms, 32(6): 945-953. doi: 10.1002/esp.1485


    Pan J W, Bai M K, Li C, et al. 2021. Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo MS7.4 earthquake. Acta Geologica Sinica (in Chinese), 95(6): 1655-1670. doi: 10.3969/j.issn.0001-5717.2021.06.001


    Pierce I, Williams A, Koehler R D, et al. 2020. High-resolution structure-from motion models and orthophotos of the southern sections of the 2019 MW7.1 and 6.4 ridgecrest earthquakes surface ruptures. Seismological Research Letters, 1-3, doi: 10.1785/0220190289.


    Pollitz F P, Murray J R, Minson S E, et al. 2019. Observations and models of crustal deformation transients following the 2019 Ridgecrest, California, earthquake sequence. //AGU Fall Meeting 2019 Abstracts. AGU.


    Ponti D J, Blair J L, Rosa C M, et al. 2020. Documentation of surface fault rupture and ground-deformation features produced by the 4 and 5 July 2019 MW6.4 and MW7.1 ridgecrest earthquake sequence. Seismological Research Letters, 91(5): 2942-2959, doi: 10.1785/0220190322.


    Quigley M, VanDissen R, Litchfield N, et al. 2012. Surface rupture during the 2010 MW7.1 Darfield (Canterbury) earthquake: implications for fault rupture dynamics and seismic-hazard analysis. Geology, 40(1): 55-58. doi: 10.1130/G32528.1


    Regmi N R, McDonald E V, Bacon S N. 2014. Mapping Quaternary alluvial fans in the southwestern United States based on multiparameter surface roughness of lidar topographic data. Journal of Geophysical Research: Earth Surface, 119(1): 12-27, doi: 10.1002/2012JF002711.


    Ren Z K, Chen T, Zhang H P, et al. 2014. LiDAR survey in active tectonics studies: An introduction and overview. Acta Geologica Sinica (in Chinese), 88(6): 1196-1207.


    Ren Z K, Zhang Z Q. 2019. Structural analysis of the 1997 MW7.5 Manyi earthquake and the kinematics of the Manyi Fault, central Tibetan plateau. Journal of Asian Earth Sciences, 179: 149-164. doi: 10.1016/j.jseaes.2019.05.003


    Rodriguez PadillaA M, Quintana M A, Prado R M, et al. 2022. Near-field high-resolution maps of the ridgecrest earthquakes from aerial imagery. Seismological Research Letters. , 93(1): 494-499. doi: 10.1785/0220210234


    Scholz C H. 2002. Acknowledgments. //The Mechanics of Earthquakes and Faulting. Cambridge, United Kingdom: Cambridge University Press, xvii-xix.


    Scholz C H. 2019. The Mechanics of Earthquakes and Faulting. Cambridge, United Kingdom: Cambridge University Press.


    Schwartz D P, Coppersmith K J. 1984. Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas Fault Zones. Journal of Geophysical Research: Solid Earth, 89(B7): 5681-5698. doi: 10.1029/JB089iB07p05681


    Shao Y X, Liu-Zeng J, Gao Y P, et al. 2022. Coseismic displacement measurement and distributed deformation characterization: A case of 2021 MW7.4 Madoiearthquake. Seismology and Geology (in Chinese), 44(2): 506-523. doi: 10.3969/j.issn.0253-4967.2022.02.014


    Sharp R V, Lienkaemper J J, Rymer M J. 1982. Surface displacement on the imperial and superstition hills faults triggered by the Westmorland, California, Earthquake of 26 April 1981. U.S. Geological Survey Open-File Report Vol. 1982 (82-282), doi: 10.3133/ofr82282.


    Sieh K, Jones L, Hauksson E, et al. 1993. Near-field investigations of the Landers earthquake sequence, April to July 1992. Science, 260(5105): 171-176. doi: 10.1126/science.260.5105.171


    Sieh K. 1996. The repetition of large earthquakes. Proceedings of the National Academy of Sciences of the United States of America, 93(9): 3764-3771. doi: 10.1073/pnas.93.9.3764


    Smith M J, Anders N S, Keesstra S D. 2016. CLustre: semi-automated lineament clustering for palaeo-glacial reconstruction. Earth Surface Processes and Landforms, 41(3): 364-377. doi: 10.1002/esp.3828


    Spotila J A, Sieh K. 1995. Geologic investigations of a "slip gap" in the surficial ruptures of the 1992 Landers earthquake, southern California. Journal of Geophysical Research: Solid Earth, 100(B1): 543-559, doi: 10.1029/94JB02471.


    Sudre C H, Li W Q, Vercauteren T, et al. 2017. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. //Third International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Québec City, QC, Canada: Springer, 240-248.


    Tchalenko J S, Ambraseys N N. 1970. Structural analysis of the Dasht-e Bayaz (Iran) earthquake fractures. GSA Bulletin, 81(1): 41-60. doi: 10.1130/0016-7606(1970)81[41:SAOTDB]2.0.CO;2


    Tingdahl K M, De Rooij M. 2005. Semi-automatic detection of faults in 3D seismic data. Geophysical Prospecting, 53(4): 533-542. doi: 10.1111/j.1365-2478.2005.00489.x


    Treiman J A, Kendrick K J, Bryant W A, et al. 2002. Primary surface rupture associated with the MW7.1 16 October 1999 Hector Mine earthquake, San Bernardino County, California. Bull. Seismol. Soc. Am. , 92(4): 1171-1191. doi: 10.1785/0120000923


    Valentine A P, Kalnins L M, Trampert J. 2013. Discovery and analysis of topographic features using learning algorithms: A seamount case study. Geophysical Research Letters, 40(12): 3048-3054. doi: 10.1002/grl.50615


    Wainwright H M, Dafflon B, Smith L J, et al. 2015. Identifying multiscale zonation and assessing the relative importance of polygon geomorphology on carbon fluxes in an Arctic tundra ecosystem. Journal of Geophysical Research Biogeosciences, 120(4): 788-808, doi: 10.1002/2014jg002799.


    Walker R T, Telfer M, Kahle R L, et al. 2016. Rapid mantle-driven uplift along the Angolan margin in the late Quaternary. Nature Geoscience, 9(12): 909-914. doi: 10.1038/ngeo2835


    Wang P, Liu X L, Liu J, et al. 2020. Virtual reality technology and its application in earth science. Chinese Journal of Geology (in Chinese), 55(1): 290-304.


    Wang W X, Shao Y X, Yao W Q, et al. 2022. Rapid extraction of features and indoor reconstruction of 3D structures of MadoiMW7.4 earthquake surface ruptures based on photogrammetry method. Seismology and Geology (in Chinese), 44(2): 524-540. doi: 10.3969/j.issn.0253-4967.2022.02.015


    Wei Z Y, Ramon A, He H L, et al. 2015. Accuracy analysis of terrain point cloud acquired by "structure from motion" using aerial photos. Seismology and Geology (in Chinese), 37(2): 636-648. doi: 10.3969/j.issn.0253-4967.2015.02.024


    Wells D L, Coppersmith K J. 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. , 84(4): 974-1002.


    Wesnousky S G. 2008. Displacement and geometrical characteristics of earthquake surface ruptures: Issues and implications for seismic-hazard analysis and the process of earthquake rupture. Bull. Seismol. Soc. Am. , 98(4): 1609-1632, doi: 10.1785/0120070111.


    Xu X H, Tong X P, Sandwell D T, et al. 2016. Refining the shallow slip deficit. Geophysical Journal International, 204(3): 1867-1886.


    Xu X W, Yu G H, Klinger Y, et al. 2006. Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (MW7.8), northern Tibetan Plateau, China. Journal of Geophysical Research: Solid Earth, 111(B5): B05316, doi: 10.1029/2004JB003488.


    Yao W Q, Liu-Zeng J, Oskin M, et al. 2019. Application of semiautomatic extraction of fluvial terraces based on R language-An example from the yellow river terraces at Mijiashan. Seismology and Geology (in Chinese), 41(2): 363-376. doi: 10.3969/j.issn.0253-4967.2019.02.007


    Yao W Q, Wang Z J, Liu-Zeng J, et al. 2022. Discussion on coseismic surface rupture length of the 2021 MW7.4 Madoiearthquake, Qinghai, China. Seismology and Geology (in Chinese), 44(2): 541-559.


    Yilmaz I. 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional probability, logistic regression, artificial neural networks, and support vector machine. Environmental Earth Sciences, 61(4): 821-836. doi: 10.1007/s12665-009-0394-9


    Zachariasen J, Sieh K. 1995. The transfer of slip between two en echelon strike-slip faults: A case study from the 1992 Landers earthquake, southern California. Journal of Geophysical Research: Solid Earth, 100(B8): 15281-15301, doi: 10.1029/95JB00918.


    Zhou Y Z, Chen S, Zhang Q, et al. 2018. Advances and prospects of big data and mathematical geoscience. Acta Petrologica Sinica (in Chinese), 34(2): 255-263.


    毕海芸, 郑文俊, 曾江源等. 2017. SfM摄影测量方法在活动构造定量研究中的应用. 地震地质, 39(4): 656-674.


    邓起东, 于贵华, 叶文华. 1992. 地震地表破裂参数与震级关系的研究. //邓起东(主编). 活动断裂研究(2). 北京: 地震出版社, 247-264.


    龚健雅, 季顺平. 2018. 摄影测量与深度学习. 测绘学报, 47(6): 693-704.


    韩龙飞, 刘静, 袁兆德等. 2019. 基于高分辨率地形数据的冲洪积扇特征提取与演化模式讨论——以海原断裂带老虎山地区冲洪积扇为例. 地震地质, 41(2): 251-265. doi: 10.3969/j.issn.0253-4967.2019.02.001


    韩龙飞, 刘静, 姚文倩等. 2022. 2021年玛多MW7.4地震震中区地表破裂的精细填图及阶区内的分布式破裂讨论. 地震地质, 44(2): 484-505. doi: 10.3969/j.issn.0253-4967.2022.02.013


    李宁云. 2018. 黄河源区沼泽湿地宏观生态变化与气候的关系研究[博士论文]. 昆明: 云南大学.


    李智敏, 李文巧, 李涛等. 2021. 2021年5月22日青海玛多MS7.4地震的发震构造和地表破裂初步调查. 地震地质, 43(3): 722-737. doi: 10.3969/j.issn.0253-4967.2021.03.016


    刘静, 陈涛, 张培震等. 2013. 机载激光雷达扫描揭示海原断裂带微地貌的精细结构. 科学通报, 58(1): 41-45.


    刘小利, 夏涛, 刘静等. 2022. 2021年青海玛多MW7.4地震分布式同震地表裂缝特征. 地震地质, 44(2): 461-483.


    潘家伟, 白明坤, 李超等. 2021. 2021年5月22日青海玛多MS7.4地震地表破裂带及发震构造. 地质学报, 95(6): 1655-1670.


    任治坤, 陈涛, 张会平等. 2014. LiDAR技术在活动构造研究中的应用. 地质学报, 88(6): 1196-1207.


    邵延秀, 刘静, 高云鹏等. 2022. 同震地表破裂的位移测量与弥散变形分析——以2021年青海玛多MW7.4地震为例. 地震地质, 44(2): 506-523. doi: 10.3969/j.issn.0253-4967.2022.02.014


    王鹏, 刘小利, 刘静等. 2020. 虚拟现实技术及其在地球科学中的应用. 地质科学, 55(1): 290-304.


    王文鑫, 邵延秀, 姚文倩等. 2022. 基于摄影测量技术对玛多MW7.4地震地表破裂特征的快速提取及三维结构的室内重建. 地震地质, 44(2): 524-540.


    魏占玉, Ramon A, 何宏林等. 2015. 基于SfM方法的高密度点云数据生成及精度分析. 地震地质, 37(2): 636-648.


    姚文倩, 刘静, Oskin M等. 2019. 利用R语言半自动化提取河流阶地——以米家山黄河阶地为例. 地震地质, 41(2): 363-376.


    姚文倩, 王子君, 刘静等. 2022. 2021年青海玛多MW7.4地震同震地表破裂长度的讨论. 地震地质, 44(2): 541-559.


    中国地震台网中心. 2021. 青海果洛州玛多县7.4级地震. https://news.ceic.ac.cn/CC20210522020411.html.


    周永章, 陈烁, 张旗等. 2018. 大数据与数学地球科学研究进展——大数据与数学地球科学专题代序. 岩石学报, 34(2): 255-263.

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索



Article Metrics

Article views(1770) PDF downloads(162) Cited by(0)



    DownLoad:  Full-Size Img  PowerPoint