Citation: | HAN PengHui, WANG YongGang, SHI Yan, SHI LianCheng, WANG ZhiHong, WANG YongYang. 2024. Research on magnetic interference tests of multi-rotor Unmanned Aerial Vehicle (UAV) intended for aeromagnetic surveying. Progress in Geophysics, 39(1): 369-378. doi: 10.6038/pg2024HH0057 |
In the early stage of Unmanned Aerial Vehicle (UAV) aeromagnetic surveying, a comprehensive evaluation of UAV-related magnetic interference sources and characteristics can provide basis support for determining the appropriate installation position and method of the magnetometer, and selecting effective data noise reduction measures. Taking multi-rotor UAV as an example, this paper conducts magnetic characteristics mapping of the UAV, interference testing of abnormal parts under different conditions, time-frequency analysis of motor interference signals, and the interference distance testing during its dynamic flight. According to the research results, it identifies that motor and current are the main interference sources. Generation and transmission of current will not only change the original static interference intensity, but also produce dynamic vibration noise. The vibration signal during the motor rotation is multi-frequency compound interference, and the relationship between different frequencies is related to its rotation speed, the number of rotors and stators. The interference signal intensity recorded by the magnetometer rapidly decays as the distance between it and the interference source increases, and can be ignored beyond a certain distance. The method in this paper can serve as a reference for other UAV interference tests, and the relevant conclusions can also be used to guide the installation of magnetometers and data noise reduction.
Dou Z Y. 2018. Research on key technology of horizontal magnetic gradient measurement for optical pump based on rotor UAV [Master's thesis] (in Chinese). Changchun: Jilin University. |
|
Eppelbaum L, Mishne A. 2011. Unmanned airborne magnetic and VLF investigations: Effective geophysical methodology for the near future. Positioning, 2(3): 112-133, doi: 10.4236/pos.2011.23012. |
|
Forrester R W. 2011. Magnetic signature control strategies for an unmanned aircraft system [Master's thesis]. Ottawa, Canada: Carleton University. |
|
Gao Q M. 2020. Research on system error calibration and interference compensation technology of aeromagnetic three-component survey based on fixed-wing UAV [Ph. D. thesis] (in Chinese). Changchun: Jilin University. |
|
Guo H, Wang M, Yao Y Y, et al. 2022. Research and application of aeromagnetic three-component detection system for CH-4 UAV. Chinese Journal of Geophysics (in Chinese), 65(11): 4485-4494, doi: 10.6038/cjg2022P0612. |
|
Huang Y, Luo D, Feng Z C, et al. 2019. Unmanned helicopter aeromagnetic measurement system and its application. Geophysical and Geochemical Exploration (in Chinese), 43(2): 386-392, doi: 10.11720/wtyht.2019.1466. |
|
Jirigalatu J, Krishna V, da Silva E L S, et al. 2021. Experiments on magnetic interference for a portable airborne magnetometry system using a hybrid unmanned aerial vehicle (UAV). Geoscientific Instrumentation, Methods and Data Systems, 10(1): 25-34, doi: 10.5194/gi-10-25-2021. |
|
Li F, Ding Z Q, Cui Z Q, et al. 2018. Application demonstration of the CH-3 UAV-borne magnetic survey system in different terrain areas of Xinjiang. Geology and Exploration (in Chinese), 54(4): 735-746, doi: 10.13712/j.cnki.dzykt.2018.04.007. |
|
Li J F, Li W J, Qin X W, et al. 2014. Trial survey of a novel UAV-borne magnetic system in the Duobaoshan ore district. Geophysical and Geochemical Exploration (in Chinese), 38(4): 846-850, doi: 10.11720/wtyht.4.38. |
|
Olhede S C, Walden A T. 2002. Generalized Morse wavelets. IEEE Transactions on Signal Processing, 50(11): 2661-2670, doi: 10.1109/TSP.2002.804066. |
|
Parvar K. 2016. Development and evaluation of unmanned aerial vehicle (UAV) magnetometry systems [Master's thesis]. Kingston, Ontario, Canada: Queen's University. |
|
Qiao Z K, Ma G Q, Zhou W N, et al. 2020. Research on the comprehensive compensation of aeromagnetic system error of multi-rotor UAV. Chinese Journal of Geophysics (in Chinese), 63(12): 4604-4612, doi: 10.6038/cjg2020o0258. |
|
Sterligov B, Cherkasov S. 2016. Reducing magnetic noise of an unmanned aerial vehicle for high-quality magnetic surveys. International Journal of Geophysics, 2016: 4098275, doi: 10.1155/2016/4098275. |
|
Teskey D J, Barlow R, Hood P J, et al. 1991. Guide to aeromagnetic specifications and contracts. Ottawa: Geological Survey of Canada, 1-73. |
|
Tuck L, Samson C, Laliberté J, et al. 2018. Magnetic interference testing method for an electric fixed-wing unmanned aircraft system (UAS). Journal of Unmanned Vehicle Systems, 6(3): 177-194, doi: 10.1139/juvs-2018-0006. |
|
Tuck L E, Samson C, Laliberté J, et al. 2021. Magnetic interference mapping of four types of unmanned aircraft systems intended for aeromagnetic surveying. Geoscientific Instrumentation, Methods and Data Systems, 10(1): 101-112, doi: 10.5194/gi-10-101-2021. |
|
Walter C, Braun A, Fotopoulos G. 2021. Characterizing electromagnetic interference signals for unmanned aerial vehicle geophysical surveys. Geophysics, 86(6): J21-J32, doi: 10.1190/geo2020-0895.1. |
|
Walter C A. 2021. Optimization of UAV-borne aeromagnetic surveying in mineral exploration [Ph. D. thesis]. Kingston, Ontario, Canada: Queen's University. |
|
Wang J, Guo Z Q, Qiao Y C. 2015. Magnetic compensation of the fixed-wing UAV aeromagnetic detection system. Progress in Geophysics (in Chinese), 30(6): 2931-2937, doi: 10.6038/pg20150662. |
|
Xu Q F, Liu L, Huang S S, et al. 2020. Research and test on compensation method of a domestic cesium optically pumped aeromagnetic system for UAV helicopter. Journal of Naval Aeronautical and Astronautical University (in Chinese), 35(1): 141-148. |
|
Zhang F M, Wen J L, Zhao X H, et al. 2019. Development and application of aeromagnetic measurement system for unmanned helicopter. Progress in Geophysics (in Chinese), 34(4): 1694-1699, doi: 10.6038/pg2019CC0189. |
|
窦子优. 2018. 基于旋翼无人机的光泵水平磁梯度测量关键技术研究[硕士论文]. 长春: 吉林大学. |
|
高全明. 2020. 固定翼无人机航磁三分量系统误差校正与干扰补偿技术研究[博士论文]. 长春: 吉林大学. |
|
郭华, 王明, 姚雨暘, 等. 2022. 彩虹-4无人机航磁三分量测量系统研发及应用研究. 地球物理学报, 65(11): 4485-4494, doi: 10.6038/cjg2022P0612. |
|
黄岩, 罗丁, 冯自成, 等. 2019. 无人直升机航磁测量系统集成及应用. 物探与化探, 43(2): 386-392, doi: 10.11720/wtyht.2019.1466. |
|
李飞, 丁志强, 崔志强, 等. 2018. CH-3无人机航磁测量系统在我国新疆不同地形区的应用示范. 地质与勘探, 54(4): 735-746, doi: 10.13712/j.cnki.dzykt.2018.04.007. |
|
李军峰, 李文杰, 秦绪文, 等. 2014. 新型无人机航磁系统在多宝山矿区的应用试验. 物探与化探, 38(4): 846-850, doi: 10.11720/wtyht.2014.4.38. |
|
乔中坤, 马国庆, 周文纳, 等. 2020. 多旋翼无人机航磁系统误差综合补偿研究. 地球物理学报, 63(12): 4604-4612, doi: 10.60.8/cjg2020o0258. |
|
王婕, 郭子祺, 乔彦超. 2015. 固定翼无人机航磁测量系统的磁补偿问题初探. 地球物理学进展, 30(6): 2931-2937, doi: 10.6038/pg20150662. |
|
许庆丰, 柳丽, 黄申硕, 等. 2020. 一型国产无人机直升机铯光泵航磁系统补偿方法研究和试验. 海军航空工程学院学报, 35(1): 141-148. |
|
张富明, 温建亮, 赵兴辉, 等. 2019. 无人直升机航磁测量系统的研发与应用. 地球物理学进展, 34(4): 1694-1699, doi: 10.6038/pg2019CC0189. |
Structure diagram of the multi-rotor UAV to be tested
Structure diagram of the motor (36N32P)
Background magnetic anomaly map of UAV in shutdown condition
Background magnetic anomaly map of UAV in rotating condition
Magnetic interference curves of each measuring point under different conditions
Magnetic interference diagram caused by current change below motor
Overall(a) and local magnification(b)bcurves of the total magnetic field data in the manual rotating motor test(1 s/r)
Time-frequency spectrum of total magnetic field data in the manual rotating motor test(1 s/r)
Noise signal diagram of different frequency segments in Fig. 7b data
Total magnetic field data curve in the remote control driven UAV take-off test
Time-frequency spectrum of total magnetic field data in the remote control driven UAV take-off test
Magnetic noise curve of UAV vertical lift and fall test at uniform speed
Mean magnetic noise curves of UAV hovering at different heights