Citation: | WANG Xin, JIANG Tao, ZHOU Mi, GAO GuoHai, JIANG Wei, MEI QingYan, ZHAO Xiang. 2024. Application of neighborhood information-enhanced MLSTM in reservoir parameter prediction: a case study of heterogeneous carbonate reservoirs. Progress in Geophysics, 39(2): 620-633. doi: 10.6038/pg2024HH0153 |
Accurately predicting reservoir parameters such as porosity, permeability, and water saturation is a fundamental basis for reservoir fine evaluation and oil and gas exploration. Traditional methods for the prediction of reservoir parameters often rely on empirical formulas or simplified geological models that are built upon well logging data. However, these methods tend to overlook the nonlinear relationships among well logs and exhibit poor generalization ability when applied to complex reservoirs. Facing the strong heterogeneity of carbonate reservoirs and the sequential characteristics of well logs, this paper proposes a Fused Neighborhood information Multi-layer Long Short-Term Memory network (FN-MLSTM) to address the challenge of parameters prediction of carbonate reservoir. Firstly, the Principal Component Analysis (PCA) is employed to extract independent features from well logs. Then, an unsupervised clustering technique based on the K-Means algorithm and its optimization is employed to form well groups. By incorporating the resulting neighborhood information, a Multi-layer Long Short-Term Memory network (MLSTM) is built to predict the reservoir parameters. Experimental results demonstrate that the proposed model outperforms other methods such as Long Short-Term Memory network (LSTM), Deep Neural Network (DNN), eXtreme Gradient Boosting (XGBoost), and Random Forests (RF) in terms of Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R2) on a test set of 22 wells in a specific region. This highlights the outstanding performance of the model in parameters prediction. Moreover, ablation experiments show that the integration of neighborhood information effectively improves the predictive accuracy of the model.
Al-Anazi A F, Gates I D. 2010. Support vector regression for porosity prediction in a heterogeneous reservoir: a comparative study. Computers & Geosciences, 36(12): 1494-1503. |
|
Alizadeh B, Najjari S, Kadkhodaie-Ilkhchi A. 2012. Artificial neural network modeling and cluster analysis for organic facies and burial history estimation using well log data: a case study of the South Pars Gas Field, Persian Gulf, Iran. Computers & Geosciences, 45: 261-269. doi: 10.3970/cmc.2012.028.261 |
|
An P, Cao D P, Zhao B Y, et al. 2019. Reservoir physical parameters prediction based on LSTM recurrent neural network. Progress in Geophysics (in Chinese), 34(5): 1849-1858, doi: 10.6038/pg2019CC0366. |
|
Archie G E. 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146(1): 54-62. doi: 10.2118/942054-G |
|
Bedi J, Toshniwal D. 2019. Deep learning framework to forecast electricity demand. Applied Energy, 238: 1312-1326. doi: 10.1016/j.apenergy.2019.01.113 |
|
Burchette T P. 2012. Carbonate rocks and petroleum reservoirs: a geological perspective from the industry. Geological Society, London, Special Publications, 370: 17-37. doi: 10.1144/SP370.14 |
|
Chen W, Yang L Q, Zha B, et al. 2020. Deep learning reservoir porosity prediction based on multilayer long short-term memory network. Geophysics, 85(4): WA213-WA225. doi: 10.1190/geo2019-0261.1 |
|
Coates G R, Galford J, Mardon D, et al. 1998. A new characterization of bulk-volume irreducible using magnetic resonance. The Log Analyst, 39(1): SPWLA-1998-v39n1a4. |
|
Ding S, Yang S F, Lu W, et al. 2023. Robust prediction for water saturation based on strategy of light gradient boosting machine. Progress in Geophysics (in Chinese), 38(1): 185-200, doi: 10.6038/pg2023GG0145. |
|
Gu Y F, Bao Z D, Lin Y B, et al. 2017. The porosity and permeability prediction methods for carbonate reservoirs with extremely limited logging data: stepwise regression vs. N-way analysis of variance. Journal of Natural Gas Science and Engineering, 42: 99-119. doi: 10.1016/j.jngse.2017.03.010 |
|
Guan Q Q. 2022. Prediction method of total organic carbon in shale oil reservoir based on PCA-CNN model. Petroleum Geology and Recovery Efficiency (in Chinese), 29(6): 49-57, doi: 10.13673/j.cnki.cn37-1359/te.202109017. |
|
Guo J C, Zhou H Y, Zeng J, et al. 2020. Advances in low-field nuclear magnetic resonance (NMR) technologies applied for characterization of pore space inside rocks: a critical review. Petroleum Science, 17(5): 1281-1297. doi: 10.1007/s12182-020-00488-0 |
|
Han X H, Zhang H, Mao X J, et al. 2021. A method of gas porosity measurement for tight reservoirs based on mechanical analysis of core chamber. Chinese Journal of Geophysics (in Chinese), 64(1): 289-297, doi: 10.6038/cjg2021O0345. |
|
Hu X Y, Yuan W, Tang Z, et al. 2018. Calculation method of shaly sands reservoir water saturation based on petrophysical facies. Progress in Geophysics (in Chinese), 33(2): 808-814, doi: 10.6038/pg2018BB0096. |
|
Karamizadeh S, Abdullah S M, Manaf A A, et al. 2013. An overview of principal component analysis. Journal of Signal and Information Processing, 4(3B): 173-175. |
|
Kenyon W E, Day P I, Straley C, et al. 1988. A three-part study of NMR longitudinal relaxation properties of water-saturated sandstones. SPE Formation Evaluation, 3(3): 622-636. doi: 10.2118/15643-PA |
|
Khaksar A, Griffiths C M. 1998. Porosity form sonic log in gas-bearing shaly sandstones: field data versus empirical equations. Exploration Geophysics, 29(3-4): 440-446. doi: 10.1071/EG998440 |
|
Kuila U, McCarty D K, Derkowski A, et al. 2014. Total porosity measurement in gas shales by the water immersion porosimetry (WIP) method. Fuel, 117: 1115-1129. doi: 10.1016/j.fuel.2013.09.073 |
|
Liu H Y, Tian Z Y, Liu B, et al. 2018. Pore types, origins and control on reservoir heterogeneity of carbonate rocks in Middle Cretaceous Mishrif Formation of the West Qurna oilfield, Iraq. Journal of Petroleum Science and Engineering, 171: 1338-1349. doi: 10.1016/j.petrol.2018.08.034 |
|
Liu X Y, Chen X H, Li J Y, et al. 2016. Reservoir physical property prediction based on kernel-Bayes discriminant method. Acta Petrolei Sinica, 37(7): 878-886, doi: 10.7623/syxb201607006. |
|
Mukaka M M. 2012. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Medical Journal, 24(3): 69-71. |
|
Otchere D A, Ganat T O A, Gholami R, et al. 2021a. A novel custom ensemble learning model for an improved reservoir permeability and water saturation prediction. Journal of Natural Gas Science and Engineering, 91: 103962, doi: 10.1016/j.jngse.2021.103962. |
|
Otchere D A, Ganat T O A, Gholami R, et al. 2021b. Application of supervised machine learning paradigms in the prediction of petroleum reservoir properties: Comparative analysis of ANN and SVM models. Journal of Petroleum Science and Engineering, 200: 108182, doi: 10.1016/j.petrol.2020.108182. |
|
Pan S W, Zheng Z C, Guo Z, et al. 2022. An optimized XGBoost method for predicting reservoir porosity using petrophysical logs. Journal of Petroleum Science and Engineering, 208: 109520, doi: 10.1016/j.petrol.2021.109520. |
|
Rousseeuw P J. 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20: 53-65. doi: 10.1016/0377-0427(87)90125-7 |
|
Selim S Z, Ismail M A. 1984. K-means-type algorithms: a generalized convergence theorem and characterization of local optimality. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, PAMI-6(1): 81-87. doi: 10.1109/TPAMI.1984.4767478 |
|
Shao R B, Xiao L Z, Liao G Z, et al. 2022. Multitask learning based reservoir parameters prediction with geophysical logs. Chinese Journal of Geophysics (in Chinese), 65(5): 1883-1895, doi: 10.6038/cjg2022P0177. |
|
Song J G, Gao Q S, Li Z. 2016. Application of random forests for regression to seismic reservoir prediction. Oil Geophysical Prospecting (in Chinese), 51(6): 1202-1211, doi: 10.13810/j.cnki.issn.1000-7210.2016.06.021. |
|
Syakur M A, Khotimah B K, Rochman E M S, et al. 2018. Integration k-means clustering method and elbow method for identification of the best customer profile cluster[J]. IOP Conference Series: Materials Science and Engineering, 336: 012017, doi: 10.1088/1757-899X/336/1/012017. |
|
Tian H, Li M, Yang M, et al. 2015. Study on the porosity exponent of fractured-vuggy reservoirs-based on triple porosity model before and after improvement. Progress in Geophysics, 30(4): 1779-1784, doi: 10.6038/pg20150434. |
|
Tibshirani R, Walther G, Hastie T. 2001. Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society Series B: Statistical Methodology, 63(2): 411-423. doi: 10.1111/1467-9868.00293 |
|
Wood D A. 2020. Predicting porosity, permeability and water saturation applying an optimized nearest-neighbour, machine-learning and data-mining network of well-log data. Journal of Petroleum Science and Engineering, 184: 106587, doi: 10.1016/j.petrol.2019.106587. |
|
Yang L, Shami A. 2020. On hyperparameter optimization of machine learning algorithms: theory and practice. Neurocomputing, 415: 295-316. doi: 10.1016/j.neucom.2020.07.061 |
|
Yu C L, Lin C Y. 2007. Advancement of reservoir heterogeneity research. Petroleum Geology and Recovery Efficiency (in Chinese), 14(4): 15-18, 22, doi: 10.3969/j.issn.1009-9603.2007.04.004. |
|
Yu Y, Si X S, Hu C H, et al. 2019. A review of recurrent neural networks: LSTM cells and network architectures. Neural Computation, 31(7): 1235-1270. doi: 10.1162/neco_a_01199 |
|
Zhang Z, Zhang H, Li J, et al. 2021. Permeability and porosity prediction using logging data in a heterogeneous dolomite reservoir: An integrated approach. Journal of Natural Gas Science and Engineering, 86: 103743, doi: 10.1016/j.jngse.2020.103743. |
|
安鹏, 曹丹平, 赵宝银, 等. 2019. 基于LSTM循环神经网络的储层物性参数预测方法研究. 地球物理学进展, 34(5): 1849-1858, doi: 10.6038/pg2019CC0366. |
|
丁圣, 杨尚锋, 路巍, 等. 2023. 基于高效梯度提升策略含水饱和度预测模型. 地球物理学进展, 38(1): 185-200, doi: 10.6038/pg2023GG0145. |
|
管倩倩. 2022. 基于PCA-CNN模型的页岩储层有机碳含量预测方法. 油气地质与采收率, 29(6): 49-57, doi: 10.13673/j.cnki.cn37-1359/te.202109017. |
|
韩学辉, 张浩, 毛新军, 等. 2021. 基于岩心室应力应变和不确定度分析的致密储层氦孔隙度测量方法. 地球物理学报, 64(1): 289-297, doi: 10.6038/cjg2021O0345. |
|
胡向阳, 袁伟, 汤翟, 等. 2018. 基于岩石物理相的泥质砂岩储层含水饱和度计算方法. 地球物理学进展, 33(2): 808-814, doi: 10.6038/pg2018BB0096. |
|
刘兴业, 陈小宏, 李景叶, 等. 2016. 基于核贝叶斯判别法的储层物性参数预测. 石油学报, 37(7): 878-886, doi: 10.7623/syxb201607006. |
|
邵蓉波, 肖立志, 廖广志, 等. 2022. 基于多任务学习的测井储层参数预测方法. 地球物理学报, 65(5): 1883-1895, doi: 10.6038/cjg2022P0177. |
|
宋建国, 高强山, 李哲. 2016. 随机森林回归在地震储层预测中的应用. 石油地球物理勘探, 51(6): 1202-1211, doi: 10.13810/j.cnki.issn.1000-7210.2016.06.021. |
|
田瀚, 李明, 杨敏, 等. 2015. 缝洞型储层孔隙度指数的计算研究: 基于改进前后的三孔隙度模型. 地球物理学进展, 30(4): 1779-1784, doi: 10.6038/pg20150434. |
|
于翠玲, 林承焰. 2007. 储层非均质性研究进展. 油气地质与采收率, 14(4): 15-18, 22, doi: 10.3969/j.issn.1009-9603.2007.04.004. |
Workflow of reservoir parameter prediction model
Flow chart of reservoir parameter prediction model
Diagram of LSTM cell structure
Thermal map of correlation coefficient between logging curve and reservoir parameters
The optimal k-value and well group division results
The decreasing curve of loss function
The figure of ablation experiment result
Comparison figure of practical application effects of different models